

The issue of conversion

Luca Aldrighetti

Hepatobiliary Surgery Division, Head IRCCS San Raffaele Hospital, Milano Italy

Olympus does not assume any liability for the completeness, accuracy and up-to-dateness of the information provided by the speaker. Liability claims against Olympus related to damages of a material or non-material nature which have been caused due to the use or non-use of the information provided by the speaker or due to the use of incorrect an/or incomplete information are strictly excluded.

This presentation created by Luca Aldrighetti including its content are protected by copyright. You are not authorized to duplicate, distribute, reproduce or process, to make it publicly accessible or to perform this presentation or its contents without prior written consent of the owner of contents.

1032 Laparoscopic hepatic resections

(September 2005 – April 2019) 34.7% of the entire Institutional Series

1032 Laparoscopic hepatic resections

(September 2005 – April 2019) 34.7% of the entire Institutional Series

Variable		
Procedure, n (%) Right hepatectomy	126 (12,2)	
Left hepatectomy ALPPS Left lateral sectionectomy Bisegmentectomy Segmentectomy Wedge resection Lesions side, left/right n(%)	107 (10,4) 9 (0,9) 150 (14,5) 108 (10,5) 217 (21,0) 315 (30,5) 560/476 (54.3/ 45.7)	 49 intraoperative adverse events (42.2% of conversions) ✓ 41 bleeding (35.3%) ✓ 4 concerns regarding biliostasis (3.5%) ✓ 4 anaesthesiological problems (3.5%)
No. resections/patients n (%) Single Multiple Associated procedures, n (%) LPS colorectal resection	756 (73.3) 280 (26.7) 67 (6.5)	 67 intraoperative findings (57.8% of conversions) ✓ 58 oncological concerns (50%) ✓ 16 adhesions (13.8%)
Conversion rate n (%)	116 (11.2)	 ✓ 3 need for vascular/biliary resections (2.6%)

Ann Surg, 2016

Contents lists available at ScienceDirect

Surgery, 2018

Surgery

journal homepage: www.elsevier.com/locate/surg

Clinical Review

Laparoscopic versus open major hepatectomy: a systematic review and meta-analysis of individual patient data*

Meidai Kasaja, Federica Cipriania, Brice Gayet, Luca Aldrighettid, Francesca Rattid, Juan M. Sarmiento^e, Olivier Scatton^{1,e}, Ki-Hun Kim^h, Ibrahim Dagher^{1,J}, Baki Topal^k, John Primrose^a, Takeo Nomi^c, David Fuks^c, Mohammad Abu Hilal^{a,a}

Table 1

Patient characteristics from the included studies.

Author	Author Year Country	Country	Study design	No. of patie	Conversion (%)	
Abu Hilal et al ¹⁴ 2013 UK Dagher et al ¹⁵ 2009 France Komatsu et al ¹⁶ 2015 France Medbery et al ¹⁷ 2014 US		LMH	OMH			
Abu Hilal et al14	2013	UK	RM	38 (45%)	46 (55%)	7 (19)
Dagher et al ¹⁵	2009	France	RM	22 (30%)	50 (70%)	2 (9)
Komatsu et al ¹⁶	2015	France	RM	38 (50%)	38 (50%)	13 (26)
Medbery et al ¹⁷	2014	US	RM	48 (46%)	57 (54%)	5 (10.4)
Nomi et al ¹⁸	2015	France	R	183 (86)	28 (14%)	21 (11.5)
Ratti et al ¹⁹	2015	Italy	RM	49 (25%)	147 (75%)	13 (26)
Topal et al ²⁰	2012	Belgium	RM	20 (50%)	20 (50%)	5 (25)
Yoon et al ²¹	2016	Korea	RM	37 (24%)	115 (76%)	NR

Conversion rate in minor resections:

2 - 26%

Comparative Short-term Benefits of Laparoscopic Liver Resection: 9000 Cases and Climbing

Ruben Ciria, MD. PhD. *† Daniel Cherqui, MD. ‡ David A. Geller, MD. § Invier Reisona MD PhD + and Ga Wakabayashi MD PhD EACS*

Author (Country)	Year	No. LLR	No. OLR	Etiology	Conversion
Memeo ²³ (Creteil, France)	2014	45	45	HCC	0
Chan24 (Hong Kong, China)	2014	17	34	Malign	5.8%
Kim25 (Seoul, South Korea)	2014	29	29	HCC	23.3%
Dokmak ²⁶ (Clichy, France)	2014	31	31	Benign	12.9% (to HA)
Inoue27 (Osaka, Japan)	2013	23	24	CRLM	4,3%
Abu Hilal28 (Southampton, UK)	2013	46	19	Malign + benign	1 (2%)
Kanazawa ²⁹ (Osaka, Japan)	2013	28	28	HCC	5/23 hybrid (21.73%)
Cheung ³⁰ (Hong Kong, China)	2013	32	64	HCC	6 HA (18.8%)
Slim ³¹ (Milan, Italy)	2012	46	46	Malign + benign	3 (6.5%)
Truant ³² (Lille, France)	2011	36	53	HCC	7 (19.4%)
Lee ³³ (Hong Kong, China)	2011	33	.50	HCC	6 (18.2%)
Aldrighetti ³¹ (Milan, Italy)	2010	16	16	HCC	1 (6.25%)
Robles ³⁸ (Murcia, Spain)	2009	18	18	Malign + benign	0
Endo ³⁶ (Oita, Japan)	2009	10	11	HCC	Laparoscopy-assisted
lto27 (New York, USA)	2009	65	65	Malign + benign	13 (20%)
Vanounou ³⁸ (Montreal, Canada)	2009	44	29	Malign +; benign	
Carswell ³⁹ (London, UK)	2009	10	10	Malign + benign	1 (10%)
Tsinberg ⁴⁰ (Cleveland, USA)	2009	31	43	Malign + Benign	0
Abu Hilal41 (Southampton, UK)	2008	24	20	Malign +	0
				1. The R. P. B. B. B. B.	

Conversion rate in minor resections: 0 - 21.7%

Shimada (Pukuoka, Japan)	2001	17	- 38	HCC	.0
Mala ²² (Oslo, Norway)	2002	13	14	CRLM	0
Farges ⁵¹ (Clichy, France)	2002	21	21	Benign	0
Lesartel ^{-*} Creteil-France)	2003	18	20	Malign +	2 (11%)
Laurent 48 (Creteli, France	2003	13	14	HCC	2 (15%)
Morino ⁴⁵ (Turin, Italy)	2003	30	30	Malign +	0
Kaneko ¹⁰ (Tokyo, Japan)	2005	30	28	HCC	3.3%
Tang47 (Hong Kong, China)	2005	10	7	Benign	1 (10%)
Soubrane ⁴⁶ (Paris, France)	2006	16	14	LDLT	1 (6.25%)
Belli ⁴⁵ (Naples, Italy)	2007	23	23	HCC	1 (4.3%)

LLR indicates laparoscopic liver resections; OLR, open liver resections.

Liver resection activity – Hepatobiliary Surgery Division Rate of conversion and MILS/open ratio

Diffusion, outcomes and implementation of minimally invasive liver surgery: a snapshot from the I Go MILS (Italian Group of Minimally Invasive Liver Surgery) Registry

Luca Aldrighetti¹ · Francesca Ratti¹ · Umberto Cillo² · Alessandro Ferrero³ · Giuseppe Maria Ettorre⁴ · Alfredo Guglielmi⁵ · Felice Giuliante⁶ · Fulvio Calise⁷ · On behalf of the Italian Group of Minimally Invasive Liver Surgery (I GO MILS)

Table 3	Procedures	performed	in	1476	cases	included	in	the
Registry		170						

Type or resection	%	n
Wedge	49.3	72
Anatomic segmentectomy	20.2	298
Bisegmentectomy	3.4	50
Left lateral sectionectomy	13.3	196
Right posterior sectionectomy	1.6	24
Right anterior sectionectomy	0.2	
Cystopericystectomy	1.6	23
ALPPS-1 stage	0.4	(
Left hepatectomy	4.8	7
Right hepatectomy	4.3	6-
Central hepatectomy	0.3	
Right trisectionectomy	0.3	2
ALPPS-2 stage	0.2	
Left trisectionectomy	0.1	

Conversion rate: 9.4% (132/1399)

Oncological concerns	76 (57.6%)
Bleeding	35 (26.5%)
Adhesions	26 (19.7%)
Biliostasis	6 (4.5%)
Anaesthesiological problems	3 (2.3%)

JOURNAL OF LAPAROENDOSCOPIC & ADVANCED SURGICAL TECHNIQUES Volume 28, Number 7, 2018 Mary Ann Liebert, Inc. DOI: 10.1089/ap.2018.0071 **Full Reports**

Effect of Previous Abdominal Surgery on Laparoscopic Liver Resection: Analysis of Feasibility and Risk Factors for Conversion

Federica Cipriani, MD, Francesca Ratti, MD, Guido Fiorentini, MD, Marco Catena, MD, PhD, Michele Paganelli, MD, and Luca Aldrighetti, MD, PhD

	NPS group (control group) n=349	PS group (study group) n=349	Р	UPS subgroup (study subgroup) n=161	Р
Conversion, n (%)	18 (5.1)	48 (13.7)	.021	37 (23)	.015
Reason for conversion, n (%)					
Bleeding	5 (1.4)	12 (3.4)	.004	9 (5.6)	.031
Oncologic inadequacy	7 (2.0)	9 (2.5)	.892	5 (3.1)	.945
Difficult adhesiolysis	0 (0)	20 (5.7)	.004	19 (11.8)	.002
Damage to organs	1 (0.3)	1 (0.3)	.540	1 (0.6)	.647
Anesthesiological issue	2 (0.6)	3 (0.8)	.092	1 (0.6)	.495
Inaccurate biliostasis	3 (0.8)	3 (0.8)	.093	2 (1.2)	.343

TABLE 2. COMPARISON OF CONVERSION RATES AND REASONS FOR CONVERSION BETWEEN THE CONTROL GROUP (NPS) AND THE TWO STUDY GROUPS (PS AND UPS)

NPS group, patients with no history of abdominal surgery; PS group, patients known for previous abdominal surgery; UPS group, patients known for previous upper abdominal surgery.

Previous abdominal surgery, major resections and position in postero-superior segments resulted significantly associated with the risk of conversion at multivariate analysis

Outcome

How to prevent conversion?

How to manage conversion?

Outcome

How to prevent conversion?

How to manage conversion?

Conversion for Unfavorable Intraoperative Events Results in Significantly Worst Outcomes During Laparoscopic Liver Resection

Ann Surg, 2018

Lessons Learned From a Multicenter Review of 2861 Cases

Mark C. Halls, MBBS,* Federica Cipriani, MD,† Giammauro Berardi, MD,‡ Leonid Barkhatov, MD,§ Panagiotis Lainas, MD,¶ Mohammed Alzoubi, MBBS,* Mathieu D'Hondt, MD,|| Fernando Rotellar, PhD,# Ibrahim Dagher, PhD,¶ Luca Aldrighetti, PhD,† Roberto I. Troisi, PhD,‡ Bjorn Edwin, PhD,§ and Mohammed Abu Hilal, MD, PhD*

✓ Converted: 39.1%

Conversion for Unfavorable Intraoperative Events Results in Ann Surg, 2018 Significantly Worst Outcomes During Laparoscopic Liver Resection

Lessons Learned From a Multicenter Review of 2861 Cases

Mark C. Halls, MBBS,* Federica Cipriani, MD,† Giammauro Berardi, MD,‡ Leonid Barkhatov, MD,§ Panagiotis Lainas, MD,¶ Mohammed Alzoubi, MBBS,* Mathieu D'Hondt, MD,|| Fernando Rotellar, PhD,# Ibrahim Dagher, PhD,¶ Luca Aldrighetti, PhD,† Roberto I. Troisi, PhD,‡ Bjorn Edwin, PhD,§ and Mohammed Abu Hilal, MD, PhD*

222 conversions analyzed

TABLE 1. Causes of Conversion Classification **Cause of Conversion** Absolute Frequency (%) Total Unfavorable intra-operative findings Adhesions 123 42 (18.9%) 32 (14.4%) Oncological concern prior to resection 24 (10.8%) Poor access 90 days mortality 1.9% Poor liver quality (e.g., cirrhosis/steatosis) 3 (1.4%) Other (e.g., aberrant Hilar anatomy, inability to locate lesion, biliary obstruction) 22 (9.9%) Unfavorable intra-operative events Bleeding 81 (36.5%) 99 Oncological concern during/after resection 12 (5.4%) Damage to surrounding structures 3 (1.4%) 44.6% of conversions 90 days mortality 10% Cardiovascular instability on induction 3 (1.4%)

Patients who had an elective conversion for an unfavorable intraoperative finding had better outcomes than patients who had an emergency conversion secondary to an unfavorable intraoperative event.

Outcome

How to prevent conversion?

How to manage conversion?

The Southampton Consensus Guidelines for Laparoscopic Liver Surgery

From Indication to Implementation

Mohammad Abu Hilal, PhD,* Luca Aldrighetti, PhD,† Ibrahim Dagher, PhD,‡ Bjorn Edwin, PhD,§ Roberto Ivan Troisi, PhD,¶ Ruslan Alikhanov, PhD,|| Somaiah Aroori, PhD,** Giulio Belli, PhD,†† Marc Besselink, PhD,‡‡ Javier Briceno, PhD,§§ Brice Gayet, PhD,¶¶ Mathieu D'Hondt, PhD,|||| Mickael Lesurtel, PhD,*** Krishna Menon, MS,††† Peter Lodge, PhD,‡‡‡ Fernando Rotellar, PhD,§§§ Julio Santoyo, PhD,¶¶¶ Olivier Scatton, PhD,|||||| Olivier Soubrane, PhD,**** Robert Sutcliffe, MD,†††† Ronald Van Dam, PhD,‡‡‡ Steve White, PhD,§§§§ Mark Christopher Halls, MBBS,* Federica Cipriani, MD,† Marcel Van der Poel, MD,‡‡ Ruben Ciria, PhD,§§ Leonid Barkhatov, MD,§ Yrene Gomez-Luque, MD,§§ Sira Ocana-Garcia, MD,§§ Andrew Cook, MBBS,¶¶¶¶ Joseph Buell, MD,|||||||| Pierre Alain Clavien, PhD,***** Christos Dervenis, PhD,†††† Giuseppe Fusai, MS,‡‡‡‡ David Geller, MD,§§§§§ Hauke Lang, MD,¶¶¶¶¶ John Primrose, PhD,* Mark Taylor, PhD,||||||||| Thomas Van Gulik, PhD,‡‡ Go Wakabayashi, PhD,***** Horacio Asbun, MD,†††††

The Southampton Consensus Guidelines for Laparoscopic Liver Surgery

From Indication to Implementation

Mohammad Abu Hilal, PhD,* Luca Aldrighetti, PhD,† Ibrahim Dagher, PhD,‡ Bjorn Edwin, PhD,§ Roberto Ivan Troisi, PhD,¶ Ruslan Alikhanov, PhD,|| Somaiah Aroori, PhD,** Giulio Belli, PhD,†† Marc Besselink, PhD,‡‡ Javier Briceno, PhD,§§ Brice Gayet, PhD,¶¶ Mathieu D'Hondt, PhD,|||| Mickael Lesurtel, PhD,*** Krishna Menon, MS,††† Peter Lodge, PhD,‡‡‡ Fernando Rotellar, PhD,§§§ Julio Santoyo, PhD,¶¶¶ Olivier Scatton, PhD,||||| Olivier Soubrane, PhD,**** Robert Sutcliffe, MD,††† Ronald Van Dam, PhD,‡‡‡ Steve White, PhD,§§§ Mark Christopher Halls, MBBS,* Federica Cipriani, MD,† Marcel Van der Poel, MD,‡‡ Ruben Ciria, PhD,§§ Leonid Barkhatov, MD,§ Yrene Gomez-Luque, MD,§§ Sira Ocana-Garcia, MD,§§ Andrew Cook, MBBS,¶¶¶¶ Joseph Buell, MD,||||||| Pierre Alain Clavien, PhD,***** Christos Dervenis, PhD,†††† Giuseppe Fusai, MS,‡‡‡‡ David Geller, MD,§§§§§ Hauke Lang, MD,¶¶¶¶¶ John Primrose, PhD,* Mark Taylor, PhD,||||||||| Thomas Van Gulik, PhD,‡‡ Go Wakabayashi, PhD,***** Horacio Asbun, MD,††††† and Daniel Cherqui, PhD‡‡‡‡‡

What are the haemostatic techniques during laparoscopic liver resections?

R22.1: Inflow control, intravascular volume management, and secure division of vascular elements should be regarded to as the pillars of bleeding control during laparoscopic liver resections.	4	Strong (upgraded from conditional)
R22.2: Pringle maneuver is the most effective technique of inflow control, provided it is used intermittently. Hemi-hepatic inflow control should be considered as an alternative to Pringle maneuver when technically convenient.	2-	Strong (upgraded from conditional)
R22.3: A low CVP and a CO ₂ pneumoperitoneum between 12 and 14 mm Hg during the transection phase allows reduced blood loss without a subsequent risk of gas embolism.	3	Strong (upgraded from conditional)
R22.4: Cardiac preload monitoring through stroke volume variation is a valid alternative to the traditional CVP measurement as guide to fluid management during laparoscopic liver resections.	1-	Strong

Ann Surg, 2018

The Southampton Consensus Guidelines for Laparoscopic Liver Surgery

From Indication to Implementation

Mohammad Abu Hilal, PhD,* Luca Aldrighetti, PhD,† Ibrahim Dagher, PhD,‡ Bjorn Edwin, PhD,§ Roberto Ivan Troisi, PhD,¶ Ruslan Alikhanov, PhD,|| Somaiah Aroori, PhD,** Giulio Belli, PhD,†† Marc Besselink, PhD,‡‡ Javier Briceno, PhD,§§ Brice Gayet, PhD,¶¶ Mathieu D'Hondt, PhD,|||| Mickael Lesurtel, PhD,*** Krishna Menon, MS,††† Peter Lodge, PhD,‡‡‡ Fernando Rotellar, PhD,§§§ Julio Santoyo, PhD,¶¶¶ Olivier Scatton, PhD,|||||| Olivier Soubrane, PhD,*** Robert Sutcliffe, MD,††† Ronald Van Dam, PhD,‡‡‡ Steve White, PhD,§§§§ Mark Christopher Halls, MBBS,* Federica Cipriani, MD,† Marcel Van der Poel, MD,‡‡ Ruben Ciria, PhD,§§ Leonid Barkhatov, MD,§ Yrene Gomez-Luque, MD,§§ Sira Ocana-Garcia, MD,§§ Andrew Cook, MBBS,¶¶¶¶ Joseph Buell, MD,||||||| Pierre Alain Clavien, PhD,**** Christos Dervenis, PhD,†††† Giuseppe Fusai, MS,‡‡‡‡ David Geller, MD,§§§§ Hauke Lang, MD,¶¶¶¶¶ John Primrose, PhD,* Mark Taylor, PhD,||||||||||||| Thomas Van Gulik, PhD,‡‡ Go Wakabayashi, PhD,***** Horacio Asbun, MD,††††††

When and how should conversions to open surgery be considered?

R23.1: Early conversion should be considered to protect the patient from complications related to late/emergency conversions.	2-	Strong (upgraded from conditional)
R23.2: Conversion to open should be considered if the surgeon is failing to progress due to technical difficulties, if patient's condition is compromised, or if blood loss is higher than expected. In cases of uncertainty of the oncological margin, conversion should be performed if adequate margins are expected with an open approach.	3	Strong (upgraded from conditional)
R23.3: Major bleeding that requires conversion should be temporarily tamponaded and controlled before opening to avoid the risk of haemorrhagic shock and air embolism.	4	Strong (upgraded from conditional)

Outcome

How to prevent conversion?

How to manage conversion?

How to manage conversion?

Conversion for Intraoperative findings:

- Do not rush
- Prepare required instrumentation
- Change patient's position

How to manage conversion?

Conversion for Intraoperative findings:

- Do not rush
- Prepare required instrumentation
- Change patient's position

Conversion for Intraoperative adverse events:

- Analyse the type of bleeding
 - Arterial/portal: no need to grasp, just close the hilum
 - Hepatic vein: close the hilum, grasp, increase the pneumo
- Check the list of the instruments for quick conversion (Scalpel, forceps, vascular clamps)
- Do not stop to insufflate while converting
- Open the abdomen at least enough to put an hand (better if the whole incision)
- If grasper is in place (active bleeding ongoing) put the retractor. If grasping is unsatisfactory manual compression and then retractors
- If grasper in place: 1° operator keeps the camera and the grasper, assistents open the abdomen

Outcome

How to prevent conversion?

How to manage conversion?

2019

ORIGINAL ARTICLE

A stepwise learning curve to define the standard for technical improvement in laparoscopic liver resections: complexity-based analysis in 1032 procedures

Aldrighetti Luca¹ · Federica Cipriani¹ · Guido Fiorentini¹ · Marco Catena¹ · Michele Paganelli¹ · Francesca Ratti¹

- 1032 laparoscopic liver resections performed by a single surgeon (2005-2019) were stratified by difficulty scores.
- Low-Difficulty (LD, n=362); Intermediate-Difficulty (ID, n=332) and High-Difficulty (HD, n=338).
- The learning curve effect was analyzed using the Cumulative Sum (CUSUM) method taking into consideration the expected risk of conversion.

	Total (n=1032)		Low difficulty	Low difficulty (n=362)		Intermediate difficulty (n=332)		High difficulty (n=338)	
	n	%	n	%	n	%	n	%	р
Pringle Manuevre, n (%)	946	91,7	295	81,5	317	95,5	334	98,8	< 0.05
Length of surgery (min), mean ±SD	175 ± 64		149 ± 64		187 ± 71		235 ± 91		NS
Blood Loss (mL), mean ±SD	210 ± 115		150 ± 150		200 ± 50		350 ± 200		< 0.05
Associated procedures, n (%)	302	29,3	25	6,9	106	31,9	171	50,6	<0.05
Surgical margin, n (%)									NS
RO	997	96,6	357	98,6	320	96,4	320	94,7	
R1	35	3,4	5	1,4	12	3,6	18	5,3	
iurgical margin (mm), mean ±SD	8±4		10 ± 2		8±5		5±5		NS
ntraoperative blood transfusions, n (%)	114	11,0	14	3,9	33	9,9	67	19,8	<0.05
Postoperative blood transfusions, n (%)	160	15,5	31	8,6	51	15,4	78	23,1	<0.05
Conversion, n(%)	120	11,6	24	6,6	38	11,4	58	17,2	< 0.01
vlorbidity, n(%)	184	17,8	31	8,6	59	17,8	94	27,8	< 0.05
Grade of complications, n (%)		0,0							
Minor	120	11,6	22	6,1	34	10,2	64	18,9	< 0.05
Major	64	6,2	9	2,5	25	7,5	30	8,9	NS
Mortality, n(%)	4	0,4	1	0,3	1	0,3	2	0,6	NS
ength of stay (days), mean ±SD	4±1		3±1		4±1		5±1		NS

Intra- and postoperative outcome of procedures according to difficulty of laparoscopic liver resection

Updates in Surgery https://doi.org/10.1007/s13304-019-00658-9

2019

ORIGINAL ARTICLE

A stepwise learning curve to define the standard for technical improvement in laparoscopic liver resections: complexity-based analysis in 1032 procedures

Aldrighetti Luca¹ · Federica Cipriani¹ · Guido Fiorentini¹ · Marco Catena¹ · Michele Paganelli¹ · Francesca Ratti¹

CUSUM analysis of learning curve

A standard educational model—stepwise and progressive—is mandatory to allow surgeons to deine the technical and technological backgrounds to deal with a specific degree of diiculty, providing a help in the definition of indications to laparoscopic approach in each phase of training.

Conclusions

- Laparoscopic liver surgery has to deal with an intrinsic risk of conversion
- Causes of conversion are related to intraoperative findings (oncologic issues, adhesions) and to intraoperative accidents (bleeding, anaesthesiological problems)
- Late conversion secondary to intraoperative accidents negatively affects postoperative outcome
- The most frequent intraoperative accident is bleeding
- Measures to control bleeding are based on inflow (surgeon) and outflow (anaesthesiologist) control
- A good management of conversion is fundamental to maintain a good profile of safety
- Since the risk of conversion is affected by technical complexity, a stepwise approach to MILS is strongly recommended