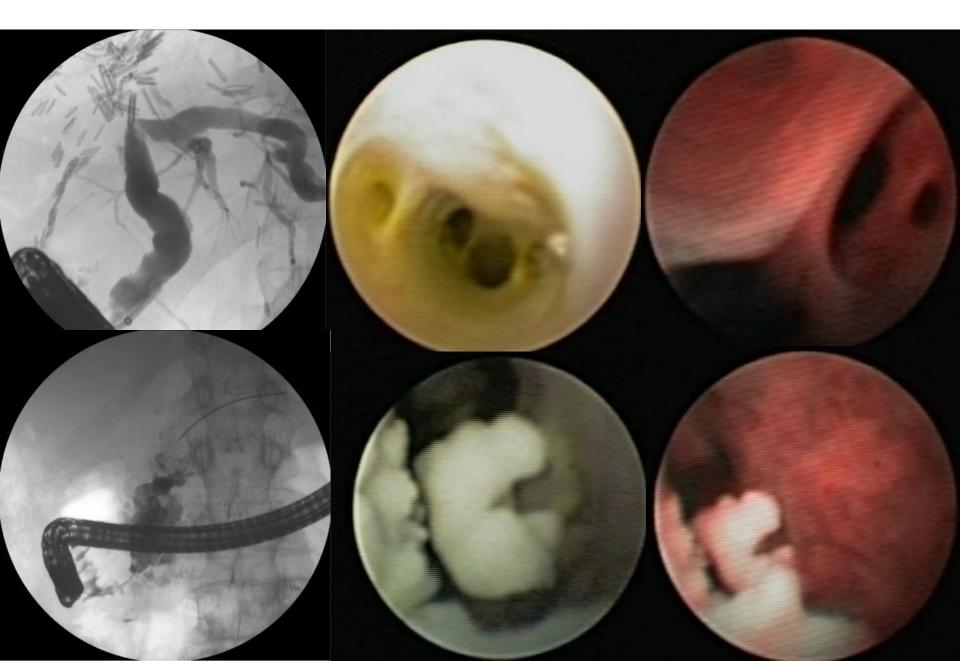
Cholangioscopy

ERCF

Cliniques universitaires Saint-Luc, Brussels, Belgium | Tom MOREELS Place, Date

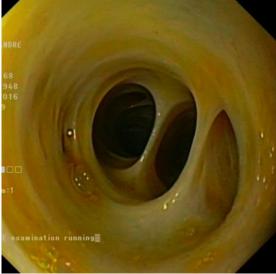


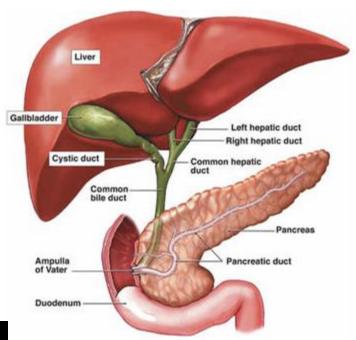
Olympus does not assume any liability for the completeness, accuracy and up-to-dateness of the information provided by the speaker. Liability claims against Olympus related to damages of a material or non-material nature which have been caused due to the use or non-use of the information provided by the speaker or due to the use of incorrect an/or incomplete information are strictly excluded.

This presentation created by Tom Moreels including its content are protected by copyright. You are not authorized to duplicate, distribute, reproduce or process, to make it publicly accessible or to perform this presentation or its contents without prior written consent of the owner of contents.

Agenda

- 1. Cholangioscopy.
- 2. History of cholangioscopy.
- 3. Technical aspects.
- 4. Indications.
- 5. Safety.
- 6. How do I do it?
- 7. Conclusions.


Cholangioscopy


Direct endoscopic visualization of the bile ducts

Cholangiography: radiological visualization

Cholangioscopy: endoscopic visualization

History of cholangioscopy

REPORTS ON NEW INSTRUMENTS AND NEW METHODS

Endoscopy 8 (1976) 172–175 © Georg Thieme Verlag, Stuttgart

Peroral Cholangioscopy

W. Rösch, H. Koch, L. Demling

Department of Internal Medicine, University of Erlangen-Nuremberg

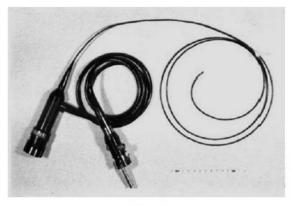


Fig. 1 a

Fig. 1 b

Fig. 1 a + b a) Side-Viewing endoscope (Motherscope) and End-Viewing cholangioscope (Babyscope). b) Babyscope advanced through the instrumentation channel of the motherscope.

History of cholangioscopy

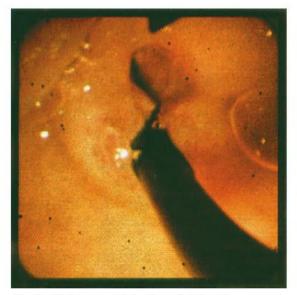


Fig. 2 Babyscope introduced into the common bile duct following endoscopic papillotomy.

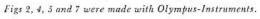


Fig. 3 Babyscope advanced into the hepatic ductal system.

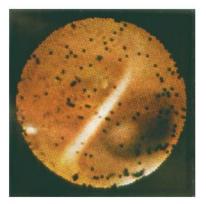


Fig. 4 View of a normal choledochus.

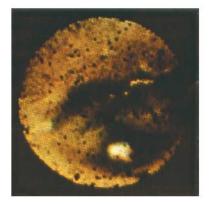


Fig. 5 Large concrement in the common bile duct.

History of cholangioscopy

Peroral Direct Cholangioscopy (PDCS) Using Routine Straight-view Endoscope

First Report

Y. Urakami, E. Seifert, H. Butke

Dept. of Gastroenterology Reinhard-Nieter-Krankenhaus Wilhelmshaven, W.-Germany

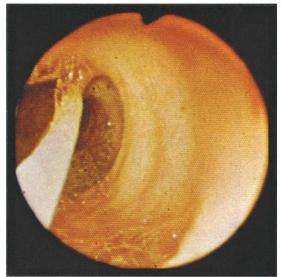


Fig. 8 PDCS gives a good survey of the entire common bile duct.

Technical aspects

- Percutaneous transhepatic cholangioscopy (PTCS)
- Peroral transpapillary cholangioscopy (POCS)

Direct vs indirect peroral cholangioscopy

POCS

Indirect: Mother-baby endoscopes (dual operator)

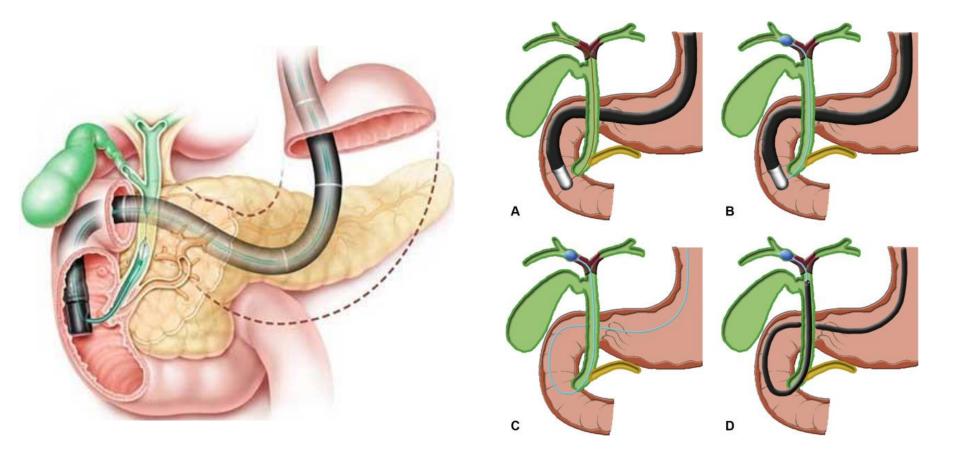
Single-use cholangioscopy (single operator SOCS)

Direct: Ultraslim upper GI endoscope

Single-Balloon Enteroscope (altered anatomy)

Imaging

Fiberoptic or Digital Video (Chip-based)



Technical aspects

TABLE 1. Cholangioscopy systems

Company	Model	Distal diameter, mm	Accessory channel, mm	Depth of field, mm	Per-oral	Working length, mm
Pentax	FCP-9P	3.1	1.2	1-50	Yes	1900
	FCN-15X	4.8	2.2	3-50	No	350
Olympus	CHF-BP30	3.1	1.2	1-50	Yes	1870
	CHF-CB30L/S	2.7	1.2	2.5-50	No	700 or 450
Boston Scientific	SpyGlass analog probe (reuse)	0.77	.9 optic channel	2-7		3000
	SpyGlass catheter (analog, single use)	3.4	1.2/0.6/0.6		Yes	2200
	SpyScope DS	3.5	1.2		Yes	2140

Technical aspects

Diagnostic applica	tions	Therapeutic applications		
Common	Uncommon	Common	Uncommon	
Indeterminate	Biliary cyst	Lithotripsy for	Biliary	
biliary strictures	evaluation	choledocholithiasis	guidewire	
			placement	
Verification of bile	Bile duct		Transpapillary	
duct stone	ischemia		gallbladder	
clearance	evaluation		drainage	
	(post-liver-			
	transplant)			
Staging of	Ductal		Foreign body	
cholangiocarcinon	na involvement		removal	
Intraductal US	in ampullary adenoma	Intraductal	(e.g., stent)	
	Hemobilia	photodynamic the	rapy	

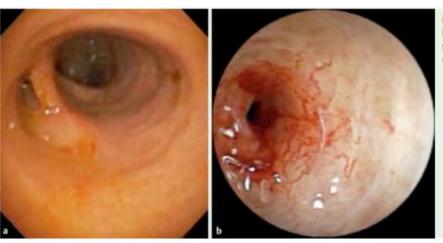


Fig. 3 Direct cholangioscopy, a Normal common bile duct with the cystic duct orifice. b Biliary stricture due to a desmoplastic cholangiocellular carcinoma with neovascularization.

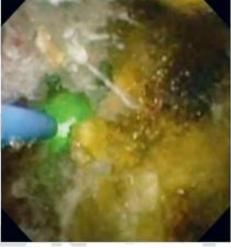


Fig. 1 "Mother-baby" dual-operator video cholangioscopy. Laser fragmentation of a common bile duct stone.

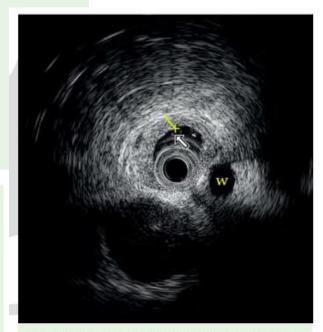


Fig. 5 Intraductal ultrasound. The 20-MHz miniprobe shows a diffuse thickening of the common bile duct (arrow) secondary to cholangiocarcinoma (infiltrating type). W, duct of Wirsung.

Intraductal biliopancreatic imaging: European Society of Gastrointestinal Endoscopy (ESGE) technology review

Authors

Andrea Tringali¹, Arnaud Lemmers², Volker Meves³, Grischa Terheggen⁴, Jürgen Pohl³, Guido Manfredi⁵, Michael Häfner⁶, Guido Costamagna¹, Jacques Devière², Horst Neuhaus⁴, Fabrice Caillol⁷, Marc Giovannini⁷, Cesare Hassan⁸, Jean-Marc Dumonceau⁹

STATUS EVALUATION REPORT

Cholangiopancreatoscopy

Prepared by: ASGE TECHNOLOGY COMMITTEE


Sri Komanduri, MD, Nirav Thosani, MD, Barham K. Abu Dayyeh, MD, MPH, Harry R. Aslanian, MD, FASGE, Brintha K. Enestvedt, MD, MBA, Michael Manfredi, MD, John T. Maple, DO, FASGE, Udayakumar Navaneethan, MD, Rahul Pannala, MD, MPH, Mansour A. Parsi, MD, FASGE, Zachary L. Smith, DO, Shelby A. Sullivan, MD, Subhas Banerjee, MD, FASGE, Chair

General problems in creating scientific evidence for cholangioscopy

- No defined standards regarding procedure
 - (→Reproducability between centres limited)
- Cholangioscopy is an expert procedure
 - (→Trial results do not necessarily translate into daily practice)
- Imaging findings have to be translated by the endoscopist
 - (→Based on impressions, not on measurements)
- Scientific gold standard (RCTs) for many questions not feasible
- Key figures can hardly be regarded separate from cholangiography (+ other modalities)
 - (→Sensitivity and specificity calculation may be biased)

malignant postoperative inflammatory

$S_{cientific}^{Boston}$

- Benign
- Post-operative: cholecystectomy; partial liver resection; liver transplantation
- Post-traumatic
- Ischemic: secondary sclerosing cholangitis
- Inflammatory:
 - primary sclerosing cholangitis
 - autoimmune cholangiopathy
 - vasculitis
- Infectious
 - recurrent cholangitis
 - abscesses
 - HIV-cholangiopathy

- Malignant
- Cholangiocarcinoma
- Hepatocellular carcinoma
- Malginant compression by lymphnodes

Cholangioscopy: guidewire cannulation + biopsy

Idio	nat	hic
IUIU	yaı	

Primary biliary cholangitis

Primary sclerosing cholangitis

Overlap syndroms

IgG4 cholangitis

Idiopathic adulthood ductopenia

Biliary atresia

Congenital

Ductal plate malformations (Caroli disease, congenital cysts, polycystic liver disease)

Cystic fibrosis

Malignant

Cholangiocarcinoma

Secondary

Ischemic (post liver transplantation)

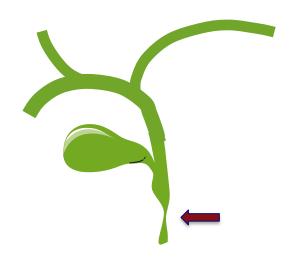
Infectious cholangiopathy

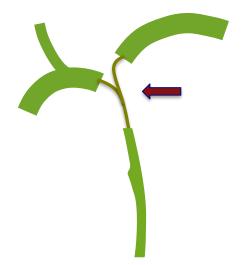
AIDS cholangiopathy

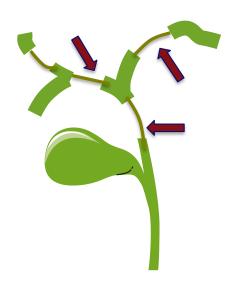
Drug-induced

latrogenic injury (surgery)

Graft-vs-host disease involving the liver


Eosinophilic cholangitis


Choledocolithiasis


Portal cavernoma cholangiopathy

Ischemic (sickle cell disease)

Stricture morphology (MRCP/ERCP)

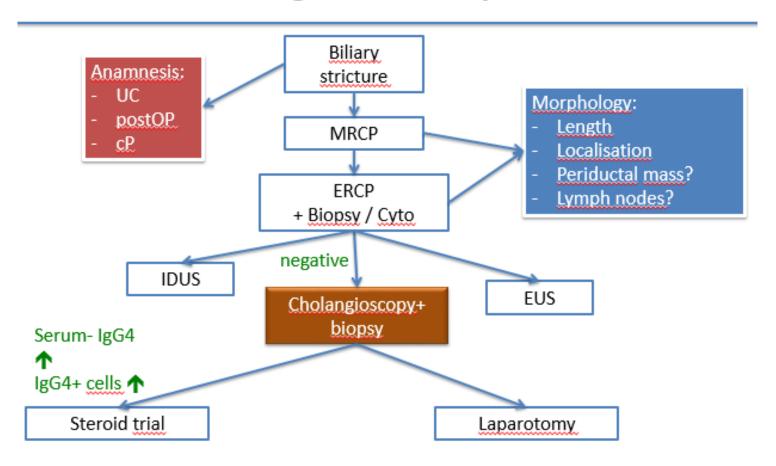
Adenoma

Cholangio cellular carcinoma

Chronic pancreatitis

Cholangio cellular carcinoma

Autoimmune cholangitis

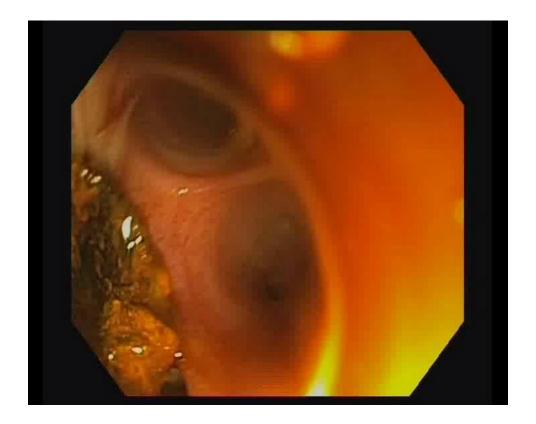

Postoperative stricture

PSC / SSC

Autoimmune cholangitis

Post-transplant strictures

Differential Diagnosis of Biliary Strictures



Indications: complex biliary stones

DASE

Management of complex stones 90% of biliary stones can be removed with standard lithotripsy methods Ductal stone CHD/CBD Intrahep Cystic duct duct impacted mobile Cholangioscopy + <15mm >15mm EHL or Laser

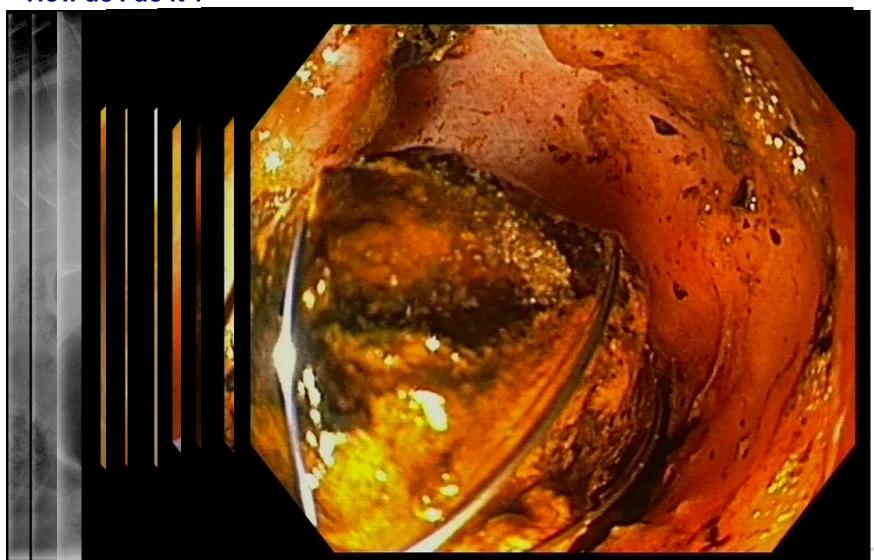
Lithotripsy

Safety

Overall rates of adverse events are higher with POCS than ERCP alone (7% vs 2.9%)

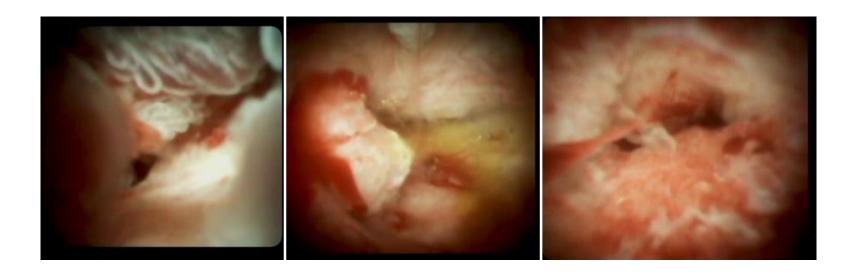
Most serious adverse events of POCs are air embolism and bile duct perforation

- In efforts to prevent air embolism, CO₂, or water and/or saline solution insufflation is recommended when direct cholangioscopy is performed
- POCS with and without intraductal lithotripsy has been associated with:
 - cholangitis rates of 0% to 14%
 - hemobilia rates of 0% to 3%
 - bile leak rate of 1% (attributable to intraductal lithotripsy)



How do I do it?

- 1. CO₂ insufflation
- 2. Conventional ERCP with large size spincterotomy
- 3. Insertion of cholangioscope over the guidewire
- 4. Single-operator vs dual-operator
- 5. Waterjet + aspiration
- 6. Also feasible in the pancreatic duct (pancreatoscopy)
- 7. Also feasible in patients with altered anatomy (direct POCs using SBE)



How do I do it?

Conclusions

- 1. Cholangioscopy is opening up the biliairy tree to endoscopic access / therapy
- 2. Undetermined biliary strictures and difficult biliary stones
- 3. Many other useful indications (also pancreas)
- 4. Single-operator vs dual-operator
- 5. Cholangioscopy is still under evolution (improvement is needed)
- 6. Add-on to MRCP EUS ERCP

